The Future of Networking: Amazing Technologies Researched

What is Networking?

Computer networking is a collection of mainframe computers, servers, peers and clients, routers, hubs, and interconnecting junctions, wireless or wired network connected in series or parallel to form a chain. A network of a computer allows interactive, collaborative performance. The workload is distributed among various components of a network. Each component ensures transparency if the network has to extend and expand its range and capacity over a period of time. Multiple operations are managed when computers are lined up in series and linked up with physical infrastructure.

Some of the Network Devices Include:
  •        Desktop computers, laptops or mainframes
  •         Auxiliary agents such as a system of wires, cables, and ports
  •         Firewalls to secure networks
  •         Bridges link up two different Local Area Networks (LAN’s)
  •         Routers or network adaptors allow computers to connect with the internet or Ethernet via jackets.
  •         NIC or Network Interface Cards are used to make connects viable by allowing mutual sharing of a common internet connection.
  •         Hub or a switch too performs a function similar to that of NIC that is they are distributing agents of internet connection between different factions of a network. The only difference between the two is that NIC has the ability to analyze and review the incoming data before it passes it forward whereas a hub directs the data in all directions without any check and balance.


Future of Networking

Computing networking has made steady progress over the years. Since its inception into the digital world, in the year 1980, networking has broadened in range, style, and composure. The modern-day network encompasses all traditional and contemporary tools, applications and program to redeem the real sensations of networking. Wireless technology is one very recent trend and WLAN is all set to rock and dominate networking.
Wireless controllers which were used to manage traffic onto systems are now nearly null and void and that is because of induction of highly sophisticated processing units within the computing devices. Ethernet cables these days can support gigabits of data along longer distances. The problems networks used to face initially because of less supportive cables are sorted out.
Ethernet cables are environment-friendly, low smoky, resistant to heat or corrosion and perform in continuity for longer durations with minimal chances of damage and decay. Routers are more sophisticated, transparent and act as wireless LAN access devices. Virtualization of servers and software-defined networking are big boosts when it comes to handling massive network operations.
Cloud computing has solved the chronic problem of handling massive infrastructures. Modern-day networking looks more cosmic, sustainable and determined and this is all because of the inclusion of the above-discussed infrastructures or applications into the networks. Networking looks in a state of evolution all the time which is very important for its stability and sustenance.

Let us have a look into some of the most dominating features which could further expand the range, size, style and capacity of networking.

a)    Diamond Conductors:
Silicon is the main constituent of hardware components of computers. In the coming years, diamond, which is used for ornamental purposes, will replace silicon as the main constituent of the physical structure of computing devices. The inclusion of diamond will solidify the performance because diamonds are more rational in displacing heat. Diamonds have an extra capability of conducting electrons too.
Diamonds will assist computers and networks in more belligerent performance. The systems would become less vulnerable to ‘aging’.

b)    Time Cloaking:
Photons are discrete packets of energy. They are the main constituents of light. Light particles are called photons in Quantum Physics. Photons are carriers of data, they carry and transmit data. Fiber optic cables use a light-induced mechanism to transmit data over longer distances.
Now researchers are working on encoding the message within the spaces within photons. If this becomes possible, the network would become more secure as an active intruder won’t be able to even detect the presence of a message.

c)     Nano-Electric Memory:
Computers with artificial brains will work more efficiently and shall respond instinctively. A new framework for extending the intellectual capability is under study, where nano-electrical impulses will personify the cognitive capabilities of machines.


Software Defined Networks

Software-defined networks or SDN has redefined and redeemed the real essence of networking. The thinking apparatus or pseudo-brains and the muscles of the network are dealt with separately in SDN. SDN provides centralized control over all the apparatus and acts as a binding force. More vigilant surveillance of networks is possible with software’s acting as a unification force.
Control plane and data plane are two distinctive modes and handling separately with centralized control. Virtualization of servers and network overlays are subtle manifestations of SDN’s. SDN operates as an open flow network. Networking access is granted to forwarding plane of a router over the network which results in affirmative control and results in increasing the value and essence of the network.

Given below are a few Advantages of SDN:
  •         SDN breaks up the networking into smaller pieces which result in more control and increased levels of efficiency and performance.
  •         Standard open interfaces are routes which allow safe and smooth passage of data within the network.
  •         Virtualization of servers in SDN allows decentralization of servers and lesser demands of physical infrastructure in comparison to hardware controlled networks.
  •         The bulk of the operations are managed by a set of protocols, algorithms and related programs so installation of heavy and bulky structures becomes a story of past.
  •         SDN is more flexible to handle and manage courtesy of its multilayered structure; things never look beyond reach and out of control.
  •         Integration of SDN based networks with innovative models of computing is easy because of its diverse and multidimensional organization.
  •        Infrastructure layer and control layer works in tandem but as two separate and distinguishable entities, so an IT professional is always in control of the network.


Cloud-Based Networks

Networks connect with a third party over WAN’s to gain access to all the type of types of equipment, tools, utensils, applications, and services. A pool filled with all technological resources is readily available to network operators as a cloud service.
Networks are shared and so are the computing resources in cloud-based networking. Resources are disseminated upon request of the network owner most of the times. Sharing the network resources with peers to create a virtually centralized digital network is what cloud-based computing is all about.
Cloud-based networking is a sub-class of software-based networking.



Given below are some of the Advantages of Cloud-Based Computing:
  •         Cloud-based networks are cost-effective simply because network owners won’t require the purchase of redundant hard drives to accommodate their resources.
  •         Cloud-based networks are scalable. Even after purchasing a file server, the owner is never sure that the purchased storage device will be enough to meet the challenges of modern day computing, it could run out of space sooner or later. Cloud-based networking has shunned all measurements and calculations.
  •         State of the art services is provided by cloud service vendors. Highly reliable organizations such as Amazon and Google are active cloud service vendors, so the quality of services is expected to be high too.
  •         Cloud services are globally accessible. Various franchises of an organization scattered in different parts of the world can organize and distribute their share of resources by simply logging on to the internet.
  •         Networking demands have increased in recent years. Networks have grown in size and the levels of expectations have increased dramatically.
  •         Innovative designs, tools, and techniques are mandatory to substantiate the increasing demands of multilayered networking zones.
  •         Cloud computing, SDN, light-induced photonic models etc. are a few of the many innovative tools and techniques which are applied in modern day networks.
  •         Decentralization and virtualization of servers are two main principles which have revitalized the energies of contemporary networking zones.
  •         Cloud sources are harbored in a centralized database but allow the indigenous networks to split their workloads into many smaller segments.
  •         Software-based networking has reshaped the dynamics of networking dramatically. Multilayered structures, the division of labor and assets, strong connection between various segments of fragmented zones provides the networks the extra ability to work out of their grooves and to break new grounds to stand high well above the competitors.
  •         Models of quantum physics have been successfully applied and implemented in the digital world and networks to substantiate the needs of networks.
  •         Recent trends and innovations have raised the levels of expectations. Customers want the more authorized, qualitative, cost-effective, unorthodox and peculiar set of tools and techniques in the near future.
  •         Computing networks are becoming multidimensional in approach and methodology and aspire to exist as self-sustainable entities.       A delightful mix of experience and youth is required by the tech developers to match up with the needs of networking.

A highly cosmopolitan approach will be required by the software developers to live up to the expectations of digital network owners.
Recent achievements are not below par by any means but realistically speaking lot more needs to be done in order to maintain a balance between the levels of expectations of the owners and delivery of goods and services.




Share:

No comments:

Post a Comment

Youtube

About US

1000FTCables is a Manufacturer and Wholesale Distributor of high-quality Networking Cables at competitive prices. Our product range includes, but not limited to Bulk Ethernet Cables, Cat5e Ethernet Cables (Category 5e cable), Cat6 Ethernet Cable (Category 6 cable) both Indoor and Outdoor Rated, also Cat6a Ethernet Cables (Category 6a cable), along with cable management, including patch cables, plenum CMP rated & non-plenum (Riser cables), RJ45 connectors, keystone jacks, patch panels & other related products.

Need Help Choosing

1000FTCables have great knowledge about cables and Network accessories. They're ready Every time to help you find the right solution, so give one of them a call today!
☎408-934-0215

Hot Product

DMCA.com Protection Status